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1 Introduction - ._—~ Nl

In this part, we prove that if a balanced bipartite graph G contains an even
wheel as an induced subgraph, then it has an extended star cutset. The
proof is divided into two parts, treated in Sections 2 and 3 respectively. In
Section 2, we give properties of the stropg"iy adjacent nodes to even wheels.
In particular, for an even wheel (W, v ‘with the smallest number of spokes
and, subject to this, the smallest ndmber of nodes, we prove that at least
two nodes of W, say wy’and wy; are adjacent to all nodes with more than
two neighbors in W. In Section 3, we prove that, for the above choice of W
and an appropriate choice of v, the nodes with more than two neighbors in
W together with the nodes of N(v) form an extended star cutset of G. <
e

2 Strongly Adjacent Nodes to an Even Wheel

Let (W, v) be an even wheel of a balanced bipartite graph G. Throughout
this part, we assume that v € V". We denote by Nw(v) the set of nodes of W
adjacent to v. We recaal from Part I that a subpath of W having two nodes
of Nw(v) as endnodes and only nodes of V(W )\ Nw(v) as intermediate nodes
is called a sector of (W,v). Two sectors are adjacent if they have a common
endnode and two nodes of Ny (v) are consecutive if they are the endnodes of
some sector. Finally, we paint the nodes of V(W)\Nw(v) with two colors,
say blue and green, in such a way that two nodes of V(W )\ Ny (v) have the
same color if they are in the same sector, and have distinct colors if they are
in adjacent sectors. The nodes of Ny (v) are left unpainted.

The goal of this section is to prove the following two theorems about the
strongly adjacent nodes to W.

Theorem 2.1 Let u € V\N(v) be a node with neighbors in at least two
distinct sectors of W. Then u has eractly two neighbors in W, say u; and
ux. Furthermore, the nodes u;,u; belong to sectors of the same color and at
least one of u;,ux is not adjacent to unpainted nodes.




Define the set of nodes:

A(W,v) = {u € V"| No sector of {W,v) entirely contains the set Ny (u)
and [Nw(v) N Nw(u)| > 2}.

Theorem 2.2 If a balanced bipartite graph contains an even wheel, then it
contains an even wheel (W,v) such that

| N Nw(u)| = 2.
u € A(W,v)

Proof of Theorem 2.1: Assume u has neighbors in at least three dif-
ferent sectors, say S;, S;, Sk. If none of these sectors is adjacent to the other
two, then there exist three unpainted nodes v;, v;, vk, such that v; € V(5;)\
(V(S;)UV(Sk)), v; € V(S;)\(V(S:)UV(SK)), vk € V(Sk)\ (V(S:) UV (S;)).
This implies the existence of a 3PC(u,v), where each of the nodes v;, v;, vk
belongs to a distinct path of the 3-path configuration, see Figure 1. Now
assume some sector is adjacent to the other two, say S; is adjacent to both
Si and Si. Then, with the notation of Figure 2, there is a 3PC(u,v) unless
node u has a neighbor v, in S; adjacent to v; and a neighbor uy in Si adjacent
to vi. When this is the case, the nodes u, u;, v;, v, vk, ux induce a 6-hole.

So u has neighbors in at most two different sectors of the wheel, say S; and
Sk. If these two sectors are adjacent, then denote by v; and v, the endnodes
such that v; € V(S;) \ V(Sk) and vi € V(Sk) \ V(S;) respectively. Among
the nodes of N(u) N V(S;), let u; be the one such that the u;v;-subpath of
S; is shortest. Similarly ux € N(u)NV(Sk) has the shortest uvi-subpath in
Si. Let P’ be the ujui-subpath of W containing the common endnode of S;
and Si. Now, consider the hole 1’ obtained from W by replacing P’ by the
path uj, u,ur. The wheel (W’ v) is an odd wheel. So the sectors S, and Si
are not adjacent.

If u has three neighbors or more on IV, say two or more in S; and at least
one in Sk, then denote by v; and v;_; the endnodes of S; and by v, one of
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the endnodes of Si. There exists a 3PC(u,v) where each of the nodes v;,
v;_1, and v belongs to a different path. Therefore u has only two neighbors
in W, say u; € V(S;) and ux € V(S;). Let C; and C; be the holes formed
by the node u and the two ujui-subpaths of W, respectively. In order for
both (Ci,v) and (Cs,v) to be even wheels, the sectors S; and S; must be
of the same color. Finally, assume that u; is adjacent to an endnode of S,
say vj, and that ux is adjacent to an endnode of Sk, say vk. Then the nodes
u, v, U;, Vj, Uk, Uk induce a 6-hole. O

Before proving Theorem 2.2, we need the following results about the
structure of a strongly adjacent node u € V" to W, relative to a chosen
center v of the wheel.

Type 1: There exists a sector of (W, v) containing all the nodes of Ny (u).

Type 2: Node u is not of Type 1 and all its neighbors in W are unpainted.
Note that, in particular, the center v of the wheel is of Type 2.

Type 3: Node u is not of Types 1 or 2 and all its painted neighbors in W
have the same color.

Type 4: Node u has painted neighbors of both colors.
We first study the structure of the Type 4 nodes.

Lemma 2.3 Let u be a Type | strongly adjacent node to an even whew
(W,v). Let s and t be a green and a blue neighbor of u, respectively. Eac’ of
the st-subpaths of W contains at least one unpainted neighbor of u. Jence
u € A(W,v).

Proof: Assume that one of the two st-subpaths of W contains no un-
painted neighbor of u. Let @ be this subpath. Let P be a s’t’-subpath of
@ such that s’ is a green neighbor of u, t’' is a blue neighbor of u, and P
contains no other painted neighbor of u. P contains an odd number of un-
painted nodes, none of which are adjacent to u. I .his number is three or




more, then v is the center of au odd wheel with hole induced by the nodes
of P and u.

So P contains exactly one neighbor of v, say z. Consider the cycle C
with unique chord vz induced by v and the two sectors of W having z as an
endnodc. Node u is a strongly adjacent node relative to C and therefore must
be of one of the three types of Theorem 3.4(I). It is not of Type 1{3.4(I)] since
s" and t’ are in different sectors. It is not of Type 2{3.4(1)] either since u is not
adjacent to v or z. Since s’ and t' are painted, they are not adjacent to v and
since s’,t',z € V°, the nodes s’ and t’ are not adjacent to z either. So the node
u is not of Type 3[3.4(I)] relative to C. This contradicts the balancedness
assumption. Therefore () must contain an unpainted node adjacent to u. O

Lemma 2.4 If a node of V", strongly adjacent to W, has a unique neighbor
w in a sector, then node w s unpainted.

Proof: Assume that node u has a unique neighbor w in sector S; and
that w 1s painted. Let v; and v;_, be the endnodes of S;. Since node u is
strongly adjacent to W, it has at least one neighbor in the path induced by
V(W) \ V(Si). Choose u* among the nodes of Ny (u) \ V(S;) and choose
v* among the nodes of Nw(v)\ V(S;) in such a way that the u*v*-subpath
of W not containing S; is shortest. Note that u* € V¢, hence u® cannot be
adjacent to v; or v;_y. This implies a 3PC(w, v), where each of the nodes v;,
v;—1 and v" belongs to a different path. O

We now consider a wheel (W, v) of G with the following property.

Definition 2.5 A hole W s small if there ezist no nodes z,y,z € V7,
strongly adjacent to W, such that the graph induced by V(W) U {z,y,z}
contains a wheel (W' u) where W' is a shorter hole than W and u is one of
the nodes x, y or z. A wheel (W,v) is small if W is small.

For example, the shortest hole 1 for which there exists a node v €
VT"\ V(W) with more than two neighbors in W, is a small hole. The following
remarks are an immediate consequence of Definition 2.5.
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Remark 2.6 Every strongly adjacent node to W in V™ which does not belong
to N(v) has at most two neighbors in each sector of (W, v).

Remark 2.7 Every Type I node u has ezxactly two neighbors in W, say u’
and u”, and there is a painted node in W which is adjacent to both u' and
u”.

Remark 2.8 For every Type 2 node u, Nw(u) = Nw(v).

Remark 2.9 Every Type 3 node u has exactly two neighbors either in each
green sector or in each blue sector. Hence, |Nw(u)| = |Nw(v)|.

Lemma 2.10 Let (W, v) be a small even wheel. Every Type 4 node u satisfies
[Nw(u)| = |Nw(v)}.

Proof: By Lemma 2.3, we have that |Nw(u) N Nw(v)| > 2. Let P
be a subpath of W with endnodes in Nw(u) N Nw(v), say = and y but no
intermediate node in Ny (u) N Ny (v). The nodes z and y are said to be
consecutive nodes of Nw(u) N Ny (v) in W. Now Lemma 2.3 implies that
V(P) N N(u) does not contain nodes of distinct colors. Assume w.l.o.g.
that V(P) N N(u) contains no green node. Then Definition 2.5 implies that
u has exactly two neighbors in every blue sector of P. This shows that
[Nw(u) N V(P)| = |Nw(v) N V(P)|. By repeating the argument between
any pair of consecutive nodes of Ny-(u) N Nw(v) in W, we get the equality
claimed in the lemma. O

Lemma 2.11 Let (W,v) be a small even wheel and let u be a Type 4 node
having painted neighbors in two adjacent sectors, say S;, Siy1. Then every
Type 2, 8 or § node is adjacent lo the common endnode of S;, Siy1.

Proof: We use the notation of Figure 3. Node v; belongs to N(u), as
a consequence of Lemma 2.3. Assume by contradiction that there exists a
node w, of Type 2, 3 or 4, which is not adjacent to v,.
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Figure 3:

By Definition 2.5, node w has a painted neighbor in S; or S;4;. If w has
a painted neighbor in both S; and S,4,, then Lemma 2.3 implies that w is
adjacent to v;. Therefore we assume w.l.o.g. that w has a painted neighbor
in S; but no painted neighbor in S;;;. Definition 2.5 implies that w has a
neighbor in Si;2. Let w; be the painted neighbor of w in S; which is closest to
u; and let w; ;2 be the neighbor of w in S;;2 which is closest to v;;;. (Possibly
W; = U; OF W42 = Vi41). Thereis a 3PC(vi4,u):

Pl = Vi1, UV, U4, U,
P; = vy, the v w,2-subpath of S; 7, w, w;, the w;u;-subpath of S;,u.
P; = the v ui41-subpath of S;4q,u. O
Lemma 2.12 Let (W,v) be a small even wheel and assume that a Type 4
node ezists. Then A(W,v) contains all Type 2, 3 and { nodes and

| n N (u)] > 2.
u € A(W,v)

Proof: Let z be a Type 4 node, having painted neighbors z; and z; of
distinct colors in (W, v). We show that each of the two uu,-subpaths of W
contains an intermediate node in N,¢ 4(w7y) Nw (u).

-1




Figure 4:

Let P be one of the two u;u;-subpath of W and let X be the set of Type
2, 3, 4 nodes in (W,v). Pick a pair of nodes z, y € X such that y is of
Type 4 relative to (W, z) and y has two painted neighbors y;, ym in P of
distinct colors in (W, z). Furthermore nodes z and y are chosen such that the
length of the yym-subpath P, of P is shortest. If P,,, contains exactly
one unpainted node of (W, z), then the proof follows from Lemma 2.11. Now
consider the case where P,, contains more than one unpainted neighbor.
This number is odd, say 2k + 1, and let z* be the k£ + 1% unpainted node in
P,yn, starting from either end. We show that every Type 2, 3, 4 node with
respect to (W, z) is adjacent to 2*.

Assume not. Then there exists a node w of Type 3 or 4 that is not
adjacent to z*. Let S; and S,, be the sectors of (W, z) containing y; and ynm,
respectively and having z, zi4; and I, Tm41 as endnodes, see Figure 4.

Let P;;,.,, be the zixm,4 -subpath of W containing z*. Then by as-
sumption, in Pz ., , node w has either two neighbors in every green sector
of (W, z) or two neighbors in every blue sector. Assume w.l.o.g. that the
second alternative holds and that S; is painted blue. Let z; be the other
endnode of the blue sector having = as endnode. In this sector, let w* be

the neighbor of w closest to ™ and wy the one closest to zi.

If w has at least one unpainted neighbor in S;, then let w; be such a
neighbor and assume w.l.o.g. that the ywi-subpath P,,, of S does not

>




Figure 5: Weakly nested nodes u and w.

contain another neighbor of w or y. Then the following three paths induce a

3PC(z*,w).

= . — -‘ v A - — “ *
Pl =T 7yayl,Pylwuwlswv P2 =2 9‘1“1’\'5P.‘rkwkvwk,w7 P3 =T aPI'w‘vw y W.

Hence w is adjacent to z; and x;4;. In the wheel (W, w), node y is of
Tvpe 4, having neighbors 2 and y; in sectors of (W, w) of opposite colors.
But now the z*y;-subpath of P is shorter than P,,,, a contradiction to the
choice of the pair z, y. O

We now examine the structure of the Type 3 nodes and discuss how they
relate to the other strongly adjacent nodes in V™. We continue to assume
that the even wheel (W, v) is small.

Let u and w be two nodes each having more than two neighbors in W.
We say that u and w are weakly nested if, in every sector S of (W, v) where
each of the nodes u and w has two neighbors, either the neighbors of w both
belong to the path connecting the two neighbors of u, or vice versa, the
neighbors of u both belong to the path connecting the two neighbors of w.
See Figure 5 for an example. We say that a family of nodes has the weak
nestedness property if every pair u. w of nodes in the family is weakly nested.
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Figure 6:

Lemma 2.13 Let (W,v) be a small even wheel. Then the weak nestedness
property holds for the family comprised of the Type 2, & and 4 nodes.

Proof: It follows from the definition that v is weakly nested with all
other nodes. Assume that two nodes u,w # v, each having more than two
neighbors in W, are not weakly nested. There are two ways in which this
could happen.

Case 1: There is a sector S where the neighbors of u, say u;, and u,, and the
neighbors of w, say w; and 1wy, appear in the order u;, w;, uy, w, where
uy # W, uz # wy and u, # wy, see Figure 6. In the wheel (W, u), node
w has a unique neighbor, namely w;, in one sector and w, is painted.
This contradicts Lemma 2.4.

Case 2: There is a sector S; where the neighbors of u, say u; and uj, and
the neighbors of w, say w; and w,, appear in the order wu;, us, wy,w;
(possibly u; = w;), see Figure 7. With the notation of Figure 7, let u;
be the neighbor of u in (V(S,41) \ {vis1}) U V(Si42) which is closest
to vi41, in the path defined by S, and S;;2. Similarly, let w3 be the
neighbor of w in (V(Si41)\ {vis1})UV(Sit2) closest to viy;. The nodes
uz and wj exist as a consequence of Definition 2.5. Since w is not
adjacent to vi4p, it follows from Lemma 2.3 that w3 € V(S5,42). As a
consequence of Definition 2.5, node u can have at most two neighbors

10




Figure 7:

in a sector of (W,w). This implies that us does not belong to the
wywz-subpath of W containing S;,;. Define the hole W' as follows. It
contains the edge (u,uz), the upv;-subpath of S, the edges v,v, vv;yq,
the v;;ouz-subpatl of Si;, and finally tle edge uau. W’ is shorter than
W and node w has at least three neighbors in W, contradicting the
assumption that (W, v) is small. O

Let u,w € V" each have more than two neighbors in W. We say that
u > w relative to the wheel (W, v) if, in every sector S of (W, v) where each
of the nodes u and w has two neighbors, the neighbors of w both belong to
the path connecting the two neighbors of v in S. We say that a family of
nodes has the nestedness property if. for every pair u, w of such nodes, either
u > w or w > u or both.

Lemma 2.14 Let (W, v) be a small even wheel. If neither w > u nor u > w
holds relative to (W,v), then w is a Type | node relative to the wheel (W, u)
and u is Type 4 relative to (W, w).

Proof: By Lemma 2.13, nodes u and w are weakly nested. This implies
that, if neither w > u nor u > w holds, then there exist two sectors S;, S,
in which the nodes u,w have their neighbors as in Figure 8 where, possibly,
either u; = w;, or u;, = w,, but not both, and, possibly, either uy, = wy,

Il




Figure 8:

or uz, = wy, but not both. However, since the u; ui,-subpath of W (u, u,,-
subpath) not containing u;, (u;,) have an even number of nodes in Nw(v),
it follows that, in each set {wy,,ws,}, {wi,,wi,} at least one of the nodes is
painted in (W, u) and the colors are distinct. The proof for u and (W, w) is
identical. O

We are now ready to prove the main result of this section.

Proof of Theorem 2.2: If there exists a small even wheel having at least
one Type 4 node, then the result holds as a consequence of Lemma 2.12. So,
we now consider the case where every small even wheel has no Type 4 node.

Let (W, v) be a small even wheel and let B denote the set of nodes of V”
with more than two neighbors in W. Lemma 2.14 shows that the nestedness
property holds for the family B. Consider the family F comprising the
Type 2 nodes and Type 3 nodes that have painted neighbors in blue sectors.
The definition of the relation > implies that, if z,y,z € F satisfy = > y
and y > z, then we also have * > :z, i.e. the relation > is transitive in the
family F. (This follows from the observations that a contradiction to > z
must occur in a blue sector and that y also has two neighbors in that sector).
Therefore, we can find u* € F such that z > u* for every € F. Now,
consider the wheel (W, u*). Note that (W, u") is small and, w.l.o.g., its blue
sectors are subpaths of the blue sectors of (W v). By our choice of u*, no
node of B has a blue neighbor in (W,«"). By Lemma 2.14, B is a nested

12




family relative to (W, u*). Since all Type 3 nodes relative to (W, u*) have
green neighbors, the relation > is transitive on B. Recall that the definition
of nestedness also implies that, for 2,y € B either y > z or z > y or both.
So we have a total transitive order on B.

For i > 1 integer, let A;(W,u") be the set of Type 2 and 3 nodes w,
strongly adjacent to (W, u*) such that |Nw(w) N Nw(u*)| > i. The total
transitive order of the relation > implies that | N,ea,(w,u+) Nw(u)| > ¢. Note
that the set A(W,u*) of Theorem 2.2 coincides with A2(W,u*). Hence The-
orem 2.2 holds for the wheel (W, «*) and the proof is complete. O

Since the wheels used in the proof of Theorem 2.2 are small, we make the
following observation.

Remark 2.15 There exists a small even wheel (W,v) that satisfies Theo-
rem 2.2.

3 An Extended Star Cutset Theorem for Small
Even Wheels

In this section, we prove the following key result concerning the decomposi-
tion of balanced bipartite graphs that contain an even wheel.

Theorem 3.1 Let (W, v) be a small even wheel in a balanced bipartite graph.
Then every path connecting a blue node to a green node of (W, v) contains a

node in N(v) U A(W,v).

Corollary 3.2 A balanced bipartite graph containing an even wheel has an
extended star cutset.

Proof: There exists a small even wheel (W, v) such that Nye aow,) Nw (u) #
@, as a consequence of Theorem 2.2 and Remark 2.15. Now, for any fi, f; €
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NueaWw,) Nw(u), Theorem 3.1 implies that N(v) U (N(fi) N N(f;)) is an
extended star cutset. O

A bipartite graph is linear if it contains no cycle of length 4. Linear
balanced bipartite graphs have been studied by Conforti and Rao [11], who
have proven the following star cutset theorem. This theorem can now be
deduced from Theorem 3.1.

Corollary 3.3 A linear balanced bipartite graph containing an even wheel
has a star cutset.

Proof: Let (W,v) be an even wheel in a linear balanced bipartite graph.
Then we have A(W,v) = {v}. Otherwise, let u be some other node in
A(W,v) and let f; and f; be two neighbors of u in Nw+.. The nodes u, v,
fi and f; induce a cycle of length 4, contradicting the linearity assumption.
Now let (W, v) be a small even wheel. It follows from Theorem 3.1 that N(v)
is a star cutset. O

In the proof of Theorem 3.1, we make use of the following lemma, which
appears in [11].

Lemma 3.4 Let (W, v) be an even wheel in a balanced bipartite graph G and
let P be a chordless path with nodes in V(G) \ (V(W)U N(v)) such that any
z € V(P) is adjacent to at most one node Nw(v) and to no painted node of
W. Then at most two nodes of Ny-(v) have at least one neighbor in P.

Proof: Assume the lemma is not true and let P/ = y;,y2,...,yn be a
shortest subpath of P with the property that three distinct nodes of Nw (v)
have at least one neighbor in P’. Denote by v, v, vs the three nodes of
Nw(v) with at least one neighbor in P’. We can assume w.l.o.g. that v; is
adjacent to y; and no other node of P’, v; is adjacent to y, and no other node
of P’ and that v; is adjacent to some intermediate nodes of P’. Let y; and y;
be such nodes, such that the y,y;-subpath P, of P’ and the y;y,-subpath
Py’]y" of P" ar: as short as possible.




Let P;; be the v;v;-subpath of W not containing v, for 7,5,k € {1,2, 3}
and ¢ # j # k. Let H,, be the hole induced by the nodes in P}, and in Pz.:xy.’
H,3 the hole iiiduced by the nodes in P35 and in P’ and let H,3 be the hole
induced by the nodes in Py3 and in P, , . Since (W,v) is an even wheel, then
one of the paths P;; contains an odd number of intermediate nodes in N(v).

Let Py, be this path. Then (H;2,v) is an odd wheel. O

Proof of Theorem 3.1: If the theorem does not hold for (W,v) , let
P = s*,s,...,t,t" be a shortest path connecting nodes of W with distinct
colors, and containing no node of N(v) U A(W,v). W..o.g. assume that
v € V7, s* is green and t* is blue. The following possibilities can occur for
nodes s and ¢.

(a) Node s (or t) has only one neighbor in W, namely s~ (¢* respectively),

(b) Node s (or t) belongs to V< \ N(v), is strongly adjacent to W, but all
its neighbors are in the same sector of (W, v),

(c) Node s (or t) belongs to V< \ N(v) and has exactly two neighbors in
(W,v), one in sector S; and one in sector S;, i # j, where S; and S;
have the same color,

(d) Node s (or t) belongs to V™ \ A(W,v) and is a Type 1 node,

(e) Node s (or t) belongs to V" \ A(I¥,v) and is a Type 3 node with at most
one neighbor in Ny (v).

It follows from Theorem 2.1 and Lemma 2.3 that no other possibility can
occur for the node s (or t).

Next, we show that we can dispose of the possibilities (b) and (d) by
modifying the wheel (W, v) and the path P.

Claim 1: There exists a wheel (W’ v) and a path P' = s*,s',... t' t*
connecting nodes of distinct colors in (W' v), containing no node of N(v)U
A(W' v), such that the nodes s’ and I’ satisfy one of the properties (a), (c)
or (e) above and, furthermore, the nodes of V(P') \ {s*,s'.t',t*'} have at
most one neighbor in W'.




Proof: First, assume that some node u of V(P)\ {s*,s,t,t"} has at least
two neighbors in W. These neighbors are unpainted, otherwise a shorter path
P would exist. All Type 2 nodes are in A(W,v), so u must be of Type 1.
Denote by v; and v;_; the nodes of W adjacent to u and by S; the vv;_;-
sector of (W,v)Assume w.l.o.g. that S; is a blue sector. Construct W’ from
W by replacing the sector S; by the sector v,_1,u,v; and let P’ be the s*u-
subpath of P. Note that A(W',v) = A(W,v). Therefore, P’ connects sectors
of distinct colors in (W’,v) and contains no node of N(v)U A(W’',v). In P’,
the node t’ adjacent to u is different from s (if s = ¢/, then this node is Type 4
relative to (W', v) but all Type 4 nodes belong to A(W’,v)). Note also that
P’ is shorter than P. So by repeating the above procedure, we can dispose
of all the nodes of V(P) \ {s",s,t,t"} with at least two neighbors in W. In
the remainder, we assume w.l.o.g. that the nodes of V(P)\ {s*,s,t,t*} have
at most one neighbor in W and, if this neighbor exists, it is unpainted.

Assume that s satisfies property (b) or (d) and let S; be the sector con-
taining s*. Denote by v; and v;-; the endnodes of S; and by s; and s;_; the
neighbors of s in §; that are closest to v; and v;_; respectively. Let (W' v)
be the wheel obtained from (W, v) by substituting the s;_,s;-subpath of S;
with s,_j,s,s; and let P’ be the subpath obtained from P by removing the
node s*, namely P’ = s,¢',...,t,t*. Since A(W',v) = A(W,v), the path P’
connects two sectors of (W', v) with distinct colors and contains no node of
N(v) U A(W',v). Note that s’ = cannot occur, since this node would be
Type 4 relative to (W’,v), a contradiction to the fact that P’ contains no
node of A(W’,v). Therefore, s’ has at most two neighbors in W', If s’ does
have two neighbors, it must be of Type 1 relative to (W', v), i.e. Property
(d) holds. In this case the above procedure can be repeated and P’ can be
shortened again. The proof of Claim 1 is now complete

As a consequence of this claim, we can assume w.l.o.g. that (W,v) and
P = s*,s,...,t,t* have the following properties, in addition to those already
stated at the beginning of the proof: s and t satisfy Properties (a), (c) or (e)
and the nodes of V(P) \ {s*,s,{,t*} have at most one neighbor in W.

Claim 2: Let s be a Type 3 node.
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Figure 9:

(i) If Nw(s) N Nw(v) = @, then no node of V(P)\ {s*,s,t,t*} is adjacent
to a node of W.

(i) If Nw(s)N Nw(v) = {f}. then no node of V(P)\{s*,s,t,t*} is adjacent
to a node of W\ {f}.

Proof: Assume not and let u be the node of V(P) \ {s*,s,t,t"} which
is closest to s in P and adjacent to a node of W (Case (i)) or of W \ {f}
(Case (ii)). By Claim 1, node u can only be adjacent to one node of W and
this node is unpainted. Let 2 € Ny-(v) be this node, see Figure 9.

By Remark 2.9, node s has exactly two neighbors in each green sector
of (W,v). By Property (e), s has at most one unpainted neighbor in W.
Let S; be the green sector having r as endnode and let s; be the ncighbor
of s closest to = in S;. Let S, be a green sector distinct from S;, say with
endnodes v; and v,_; and let s, and s,_; be the neighbors of s in S, closest
to v; and v;_; respectively. Assume w.l.o.g. that s; is painted. Then z € V¢
and s € V" are connected by a 3PC(r,s):

P, = z,u, the us-subpath of P, s
Py = z, the zs;-subpath of §; | s

P3 = z,v,v,, the v,s,-subpath of §,. s.
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Figure 10:

This completes the proof of Claim 2.
A similar statement to Claim 2 holds when ¢ is of Type 3.
Claim 3: Neither node s nor node t is of Type 3.

Proof: Assume s is a Type 3 node. By Remark 2.9, node s has exactly
two neighbors in each green sector of (W,v). Furthermore, s has at most
one unpainted neighbor, say f. Let S; be the blue sector containing t*. We
choose an adjacent green sector S,4; as follows, see Figure 10.

(i) If S, has node f as an endnode, let S;;; be the green sector, adjacent to
S,. which does not contain f as endnode.
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(11) If S; does not have node f as an endnode but one of the adjacent green
sectors has f as endnode, let S;;; be the green sector having f as
endnode.

(1) If neither of the sectors adjacent to S; has f as an endnode (or if f does
not exist), choose S, arbitrarily to be one of the sectors adjacent to

S;.

Let v; be the common endnode to S; and S;4, and let s;,; be the neighbor
of sin S;;; which is closest to v;. Note that s,4, is a painted node since v; # f.
Finally, let S, be the green sector. distinct from S,4, and adjacent to S;. Let
v; # f be an endnode of S; which is not adjacent to ¢t and let v;_; be the
other endnode of S;. (Note that such a choice of v; is always possible due
to the above conditions (i)-(iii)). Let s; be the neighbor of s in S; which is
closest to v,.

Case 1: Node t is not adjacent to v;.
Now there i1s a 3PC(v,, s):

P, = v,, the v;t*-subpath of S|, the t*s-subpath of P, s.
P, = v, the v;s;41-subpath of 5,44, s.

P; = v;,v,v;, the v;s,-subpath of S,, s.

Case 2: Node t is adjacent to v,.

This implies that ¢ is a Tvpe 3 node and that no node of V(P) \
{s*,s,t,t"} has a neighbor in Ny:(v), else s or t contradicts Claim 2.
Let P* be the st-subpath of P. Then there is a 3PC(v;, s).
P1 = v,,t,P',s.
P; = v;, the v;s;-subpath of S,. s.
In Case (i) or (ii), P; is chosen as follows:
Py =vj,v, f,s.

In Case (ii1), let s,_; be the neighbor of s closest to v,_; in S,.
Then P; 1s chosen as follows:
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Ps = v;,v,v;-1, the v;_ys;_;-subpath of §;, s.

This completes the proof of Claim 3.

Claim 4: If s satisfies Property (c), then there ezists a green sector S with

the property that each endnode of S 1s adjacent to at least one node in the
set V(P)\ {s",s,t,t"}.

Proof: Since node s satisfies Property (c), Theorem 2.1 implies that there
exists a S;, say with endnodes v; and v;_;, such that the unique neighbor s, of
s in S; is not adjacent to v;,v;—;. Let S; be the sector containing the second
neighbor s, of s and let v;,v;_; be the endnodes of S;. By Lemma 3.4, at
most two nodes of Ny (v) are adjacent to V(P)\ {s%s,¢,¢*}.

Case 1: No node of Ny (v) is adjacent to V(P)\ {s*,s,t,t"}.
Let Sk be the sector containing t* and let vx # v;,v;_1 be an endnode
of Sx. We can assume w.l.o.g. that v; # vg and that v; is not adjacent
to t*. Then, there is a 3PC(v, s):
P, = v, v, the vit*-subpath of Sy, P.
P, = v, v, the v;s;-subpath of S, s.

P; = v,v,, the v;s;-subpath of S,; s.
Case 2: Exactly one node of Nw (v), say v, is adjacent to V(P)\{s",s,¢,t*}.
Starting from s, let u* be the first neighbor of v; encountered on P.
Case 2.1: v; # v,,v;-;.

Assume w.l.o.g. that v; # v,. Then thereis a 3PC(v, s):

P, = v, v, u", the u®s-subpath of P, s,

P, and P; are the same as in Case 1.

Case 2.2: v; = v, and t satisfies Property (a).

Then, the 3-path configuration of Case 1 is still valid, except if t* is
adjacent to v;. So, we consider the case where t* is adjacent to v;. Let
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@ be the v;_,t*-subpath of W not containing v;. Let v* be the neighbor
of v;_; which is closest to t* on P and let P* be the t*v*-subpath of P.
Let H be the hole formed by @), P* and the edge v;_,v*). Then (H,v)

1s an odd wheel.

Case 2.3: v; = v;_; and ¢ satisfies Property (c).

As a consequence of Theorem 2.1, one of the neighbors of t in W is
adjacent to no node of Ny (v). Choose t* to be such a neighbor of ¢.
Then the argument of Case 1 still holds.

Case 3: Two nodes of Ny (v) are adjacent to V(P)\ {s°,s,t,t*}.

Starting from s, let u* be the first node of P having a neighbor in
Nw(v), say v € Nw(v). If v, # v,_q, then the argument of Case 2.1
still holds. So, assume w.l.o.g. that v; = v,_;. Let v, be the other node
of Nw(v) with neighbors in V(P)\ {s*,s,t,2*}. Starting from s, let
w* be the first neighbor of v, encountered on P. Assume w.l.o.g. that
v; # v,. If vy # vj, then there is 3PC (v, s):

P, = v,v,,w", the w”s-subpath of P, s.

P, and P; are as in Case 1.

Hence v, and v; are the endnodes of the green sector S; and the claim
follows.

If both s and t satisfy Property (c), then Claim 4 implies that at least
three nodes of Nw(v), namely the endnodes of two sectors of distinct colors,
have neighbors in V(P)\ {s*,s,¢,t*}. This contradicts Lemma 3.4 asserting
that at most two nodes of Ny (v) can have neighbors in V(P) \ {s*,s,t,t*}.
So we can assume w.l.o.g. that ¢ satisfies Property (a). The next claim shows
that this cannot occur either, proving the theorem.

Claim 5: Node t cannot satisfy Property (a).

Proof: Assume t satisfies Property (a) and let vj,v,;_; be the endnodes
of the sector S; containing t*. First. we show that at least one node of Ny (v)
has a neighbor in V(P) \ {s".s.t.t"}. Assume not. Then Claim 4 implies
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that node s satisfies Property (a). Let P, and P; be the two s*t*-subpaths
of W. Let H, (H;) be the hole formed by P and P, (P; respectively). Both
H, and H; have an odd number of neighbors of v and, for at least one of the
holes this number is greater than one. So either (H;,v) or (H,,v) is an odd
wheel.

When traversing P from t*, let u” be the first node encountered which
has a neighbor v; in Nw(v). We show that v; = vj or v;_;. Assume not
and let P, and P; be the t*v;-subpaths of W and let P* be the t*u*-subpath
of P. Let H,, H, be the two holes formed by P*, the edge u*v; and P, P;
respectively. Note that v has an odd number of neighbors in one of these
two holes. This odd number is greater than one, since v; # v;,v;_1. Hence,
either (H,,v) or (H;,v) is an odd wheel. So v; is an endnode of S;. Assume
w.l.o.g. that v; = v;.

If v, is the only node of Ny -(v) with neighbors in V(P)\ {s*, s, t,t*} then,
by Claim 4, node s satisfies Property (a) and, therefore, v; must also be an
endnode of the sector containing s*. In other words, s* and t* belong to
adjacent sectors. Let H be the hole formed by P and the s*t*-subpath of W
which does not contain v,. Then (H,v) is an odd wheel.

So there must be a second node of W, say v; # v;, with neighbors in
V(P)\ {s*,s,t,t"}. Let w be the neighbor of v; in P which is the closest to
t* and let @ be the wt*-subpath of P. Let w* be the neighbor of v; closest
to w in @, and let Q" be the ww*-subpath of Q. Let P, be the v;v;-subpath
of W which does not contain t*. Let P, be the v;t*-subpath of W which does
not contain v;. Finally, define the holes H, and H; as follows. H, is formed
by P,,Q" and the edges wv;,w*v;. H, is formed by P2, @ and the edge wu;.
One of the holes Hy, H, contains an odd number of neighbors of v and, if v;
is not an endnode of the sector containing t*, the number of neighbors of v is
greater than one in each of the holes H, and H,. So, either (H,,v) or (Hz,v)
is an odd wheel. So v, = v,_;.

If s satisfies Property (a), then the same argument shows that v;_; and
v; are also the endnodes of the sector containing s*, a contradiction to the
fact that s* and t* are in different sectors. If s satisfies Property (c), then,
by Claim 4, v;_; and v, are the endnodes of a green sector, a contradiction
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to the fact that the sector containing t* is painted blue. Hence the claim
follows and the proof of Theorem 3.1 is now complete. O
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